A 90 nm Communication Technology Featuring SiGe HBT Transistors, RF CMOS, Precision R-L-C RF Elements and 1 μm2 6-T SRAM Cell

Logic Technology Development

Intel Corporation, Hillsboro, OR 97124, USA
Outline

- Technology Features
- CMOS
- SiGe:C HBT
- Isolation
- Passives
- Validation Vehicles
- Conclusions
Integration

Baseline CMOS

- Shallow Trench Isolation
- CMOS Well Implants
- Thin gate and poly
- Tip implants
- Spacer Formation
- NSD/PSD
- Silicide & contacts
- Metal 1-6 Layers
- Metal 7

Communications

- High resistivity substrate
- Triple Well (deep n-well)
- LP CMOS 15Å (1.2V)
- Analog CMOS 50Å (2.5V)
- SiGe HBT module
- Poly Resistor
- MIM Capacitor / TF resistor
- Inductors
Matching Circuit Needs to Device Type

<table>
<thead>
<tr>
<th></th>
<th>Logic MOS</th>
<th>Analog MOS</th>
<th>Precision R</th>
<th>Precision C</th>
<th>High-Q L</th>
<th>Varactors</th>
<th>LN BJT</th>
<th>HF BJT</th>
<th>HV BJT</th>
<th>III-V FET</th>
<th>III-V HBT</th>
</tr>
</thead>
<tbody>
<tr>
<td>VHS differential</td>
<td></td>
</tr>
<tr>
<td>RF power amp</td>
<td></td>
</tr>
<tr>
<td>Low-noise amp</td>
<td></td>
</tr>
<tr>
<td>Mixer</td>
<td></td>
</tr>
<tr>
<td>Op amp</td>
<td></td>
</tr>
<tr>
<td>Limiting amp</td>
<td></td>
</tr>
<tr>
<td>Switch cap filter</td>
<td></td>
</tr>
<tr>
<td>ADC/DAC</td>
<td></td>
</tr>
<tr>
<td>Bandgap ref</td>
<td></td>
</tr>
<tr>
<td>MUX/DeMUX</td>
<td></td>
</tr>
<tr>
<td>VCO</td>
<td></td>
</tr>
</tbody>
</table>

Logic and analog MOS are the foundation for the majority of critical communications circuits.
Matching Circuit Needs to Device Type

<table>
<thead>
<tr>
<th></th>
<th>Logic MOS</th>
<th>Analog MOS</th>
<th>Precision R</th>
<th>Precision C</th>
<th>High-Q L</th>
<th>Varactors</th>
<th>LN BJT</th>
<th>HF BJT</th>
<th>HV BJT</th>
<th>III-V FET</th>
<th>III-V HBT</th>
</tr>
</thead>
<tbody>
<tr>
<td>VHS differential</td>
<td></td>
</tr>
<tr>
<td>RF power amp</td>
<td></td>
</tr>
<tr>
<td>Low-noise amp</td>
<td></td>
</tr>
<tr>
<td>Mixer</td>
<td></td>
</tr>
<tr>
<td>Op amp</td>
<td></td>
</tr>
<tr>
<td>Limiting amp</td>
<td></td>
</tr>
<tr>
<td>Switch cap filter</td>
<td></td>
</tr>
<tr>
<td>ADC/DAC</td>
<td></td>
</tr>
<tr>
<td>Bandgap ref</td>
<td></td>
</tr>
<tr>
<td>MUX/DeMUX</td>
<td></td>
</tr>
<tr>
<td>VCO</td>
<td></td>
</tr>
</tbody>
</table>

Precision single elements are key to many circuits
Matching Circuit Needs to Device Type

<table>
<thead>
<tr>
<th></th>
<th>Logic MOS</th>
<th>Analog MOS</th>
<th>Precision R</th>
<th>Precision C</th>
<th>High-Q L</th>
<th>Varactors</th>
</tr>
</thead>
<tbody>
<tr>
<td>VHS differential</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LN BJT</td>
</tr>
<tr>
<td>RF power amp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HF BJT</td>
</tr>
<tr>
<td>Low-noise amp</td>
<td></td>
<td>?</td>
<td></td>
<td></td>
<td></td>
<td>HV BJT</td>
</tr>
<tr>
<td>Mixer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>III-V FET</td>
</tr>
<tr>
<td>Op amp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>III-V HBT</td>
</tr>
<tr>
<td>Limiting amp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switch cap filter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>ADC/DAC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bandgap ref</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MUX/DeMUX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VCO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>?</td>
<td></td>
</tr>
</tbody>
</table>

Most circuits have multiple implementation paths, redundancy is important in process definition.
Matching Circuit Needs to Device Type

<table>
<thead>
<tr>
<th></th>
<th>Logic MOS</th>
<th>Analog MOS</th>
<th>Precision R</th>
<th>Precision C</th>
<th>High-Q L</th>
<th>Varactors</th>
<th>LN BJT</th>
<th>HF BJT</th>
<th>HV BJT</th>
<th>III-V FET</th>
<th>III-V HBT</th>
</tr>
</thead>
<tbody>
<tr>
<td>VHS differential</td>
<td></td>
</tr>
<tr>
<td>RF power amp</td>
<td></td>
</tr>
<tr>
<td>Low-noise amp</td>
<td></td>
</tr>
<tr>
<td>Mixer</td>
<td></td>
</tr>
<tr>
<td>Op amp</td>
<td></td>
</tr>
<tr>
<td>Limiting amp</td>
<td></td>
</tr>
<tr>
<td>Switch cap filter</td>
<td></td>
</tr>
<tr>
<td>ADC/DAC</td>
<td></td>
</tr>
<tr>
<td>Bandgap ref</td>
<td></td>
</tr>
<tr>
<td>MUX/DeMUX</td>
<td></td>
</tr>
<tr>
<td>VCO</td>
<td></td>
</tr>
</tbody>
</table>

Specialized BJT devices cover gaps where MOS falls short
90nm CMOS
Performance versus Low Power

Performance Devices
Low Power Devices

CV/I (Gate delay in pS)

I_{OFF} (nA/μm)

10000
1000
100
10
1
0.1
0.01

0.5 1.5 2.5 3.5
90nm Communications CMOS
RF Performance (Low Power Device)

NMOS: 225/143 F_T/F_{MAX}
PMOS: 114/70 F_T/F_{MAX}

(Vg=0.7V, Vds=1.2V)
This work

\[F_T: \text{Intrinsic NMOS Performance} \]

![Plot showing intrinsic NMOS performance with labeled references.](image-url)

- This work
- Reference [1]
- Reference [2]
- Reference [3]
- Reference [4]
- Reference [6]
F_T: Intrinsic PMOS Performance

F_T (GHz)

(CUT-OFF FREQUENCY)

L_{GATE} (μm)

This work

[6]

[7]

[8]
Fmax: Layout

- **Make R_G small**
 - Two-sided gates
 - Minimize field extension
 - Contacts close to devices
 - Multiple fingers

- **Minimize pad coupling**
 - HiRES substrates
 - Isolate/shield signal pads
 - Use higher-level metal

- **Minimize cap/scatter**
 - Isolate gate from drain
 - Taper source bus

Comparison of CMOS: F_T and F_{MAX}

This work

F_{MAX} (MAX OSC. FREQUENCY)

F_T (GHz) (CUT-OFF FREQUENCY)

Outline

- Technology Features
- CMOS
- SiGe:C HBT
Criteria for BJT device definition

- Manufacturing simplicity
- Maximum leverage of the main 90nm microprocessor process (all tools shared, no special tools)
- Meets the needs of the circuit design community
- No impact to CMOS performance
SiGe:C HBT Architecture

Quasi-self-aligned chosen as the better tradeoff between manufacturing complexity and performance.
HBT: SiGe:C Epitaxy

Baseline: 130/100 F_T/F_{MAX}

-20dB/dec

FREQUENCY (GHz)

Cum Prob %

300 mm BASELINE LOT, WIW and WTW F_T VARIATION (GHz)
No CMOS Degradation

- NMOS and PMOS I_{ON} versus I_{OFF} characteristics are not degraded by HBT integration
BJT Yield issues: impact of volume

Incoming to EPI

Increased wafer volume generated
Ge deposits on chamber walls:
Fixed with purges and pre-coats

OLD Process
Start of epi dep

OLD Process
After epi dep

NEW Process
Start of epi dep

NEW Process
After epi dep

IEDM 2002
Outline

- Technology Features
- CMOS
- SiGe:C HBT
- Isolation
Isolation: P- versus P+ epi (with DNW)

Guard ring on p+ epi (LoRes)
Guard ring on p- (HiRes)
DNW on P- (HiRes)
DNW on P+ epi (LowRes)

S21 (dB)

10 MHz 100 MHz 1 GHz 10 GHz 100 GHz
10 MHz 100 MHz 1 GHz 10 GHz 100 GHz

S21 = forward transmission gain/loss
Substrates: Latch-up, P- versus P+ epi

Merrill, R.B.; Young, W.M.; Brehmer, K. Effect of substrate material on crosstalk in mixed analog/digital integrated circuits.

Substrates: Latch-up, P- versus P+ epi with and without DNW

HOLDING VOLTAGE (V)

P- (50 ohm-cm)

DNW (magenta)
No DNW (cyan)

N+ TO PWELL TAP DISTANCE (microns)
Outline

- Technology Features
- CMOS
- SiGe:C HBT
- Isolation
- Passives
MIM Capacitor BiasTemp. Reliability (T=125C)

TTF seconds
(0.2% C at Bias=0V, 1MHz)

Bias (V)

0 5 10 15 20 25 30

1.E+01
1.E+03
1.E+05
1.E+07
1.E+09

MIM Cap CV >

< MIM Cap Bias Temp.

317 years
MIM Capacitor Reliability

OLD Process

New Process

MIM CAP LEAKAGE AT HIGH BIAS [A]

Before Stress

After Stress

A=5.2k um²
A=26k um²
A=130k um²

Cum Prob %

99.9%
99%
90%
80%
70%
60%
50%
40%
30%
20%
10%
1%
0.1%

1.0E-07 1.0E-06 1.0E-05 1.0E-04

Qbd (C/cm²)

Cum %
Hi-Q Inductor Library Templates

Focusing on lower L, Hi-Q inductors to support 10/40G circuits
Hi-Q Inductor Library Templates

This work
Measuring Q

\[Q = \frac{-\text{Im} \ (Y_{11})}{\text{Re} \ (Y_{11})} \]

FREQUENCY
(250.0MHz to 50.25GHz)
Measured versus simulated Q

Inductor Dimension:
Do = 154 um W = 12 um
S = 1 um T = 1.5

Simulated
Measured

FREQUENCY
1GHz 10 GHz

Q
-10 0 10 20
Hi-Q Inductors and substrates

![Graph showing PEAK Q vs FREQUENCY (GHz) for different materials and conditions.]

- 50 ohm-cm w/o parasitic control
- P+ epi w/o parasitic control
- 50 ohm-cm with parasitic control
- P+ epi with parasitic control
Validation vehicles

A large variety of learning vehicles are being supported. Illustrated is an LC-VCO from a 10G SerDes test circuit.
Intel CMOS 10G SerDes Test Circuit
Transmit PLL – Measured Jitter

Meets jitter transfer function specification >

OC-192 Specification is integral under curve = 100 mUI;
Actual performance is 40 mUI ~ 2X better
Conclusions

- Manufacturable communications process integrated into 90nm digital CMOS
- RF NMOS devices at $225/140 \frac{F_T}{F_{MAX}}$
- RF PMOS devices at $114/70 \frac{F_T}{F_{MAX}}$
- Baseline HBT device at $130/100 \frac{F_T}{F_{MAX}}$
- Reliable $1.15 \frac{fF}{\mu m^2}$ Cu-MIM and resistor
- Hi-Q inductors
Acknowledgment

The authors gratefully acknowledge the many people at Intel who contributed to this work, including individuals from the following organizations:

– PTD Process and Design Groups
– Sort Test Technology Development
– Quality and Reliability Engineering
– Technology Computer Aided Design
References

References

A soft copy of this and other recent Intel presentations can be found at:

www.intel.com/research/silicon